The general decision problem for Markov algorithms with axiom

نویسنده

  • Charles E. Hughes
چکیده

Introduction* Let Mj denote the general decision problem for Markov algorithms with axiom. Of interest to us is whether or not this class of problems is as richly structured, with regard to degrees of unsolvability, as those classes studied in Hughes, Overbeek, and Singletary [2]. In this paper we shall present proofs which show this to be so. In particular we shall show that the general decision problem for the range of total recursive functions is many-one reducible to Mj and consequently that every r.e. many-one degree of unsolvability is represented by Mj. Furthermore we shall show this result to be best possible, with regard to degree representation, in that every r.e. one-one degree is not represented by this family of decision problems. And finally we shall demonstrate a simple application of these results to the study of splinters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized Algorithm For 3-Set Splitting Problem and it's Markovian Model

In this paper we restrict every set splitting problem to the special case in which every set has just three elements. This restricted version is also NP-complete. Then, we introduce a general conversion from any set splitting problem to 3-set splitting. Then we introduce a randomize algorithm, and we use Markov chain model for run time complexity analysis of this algorithm. In the last section ...

متن کامل

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Markov Chain Anticipation for the Online Traveling Salesman Problem by Simulated Annealing Algorithm

The arc costs are assumed to be online parameters of the network and decisions should be made while the costs of arcs are not known. The policies determine the permitted nodes and arcs to traverse and they are generally defined according to the departure nodes of the current policy nodes. In on-line created tours arc costs are not available for decision makers. The on-line traversed nodes are f...

متن کامل

An Application of the ABS LX Algorithm to Multiple Sequence Alignment

We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Notre Dame Journal of Formal Logic

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1975